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Abstract— This work analyzes a vertically-stacked 
nanosheet field effect transistor (NSFET) for non-volatile 
charge trapping memory and artificial synaptic devices. 
The artificial synapse’s operation, long-term potentiation 
(LTP), and depression (LTD) are analogous to Erase (ERS) 
and Program (PGM) of charge trapping memory, 
respectively. The NSFET device with a gate length of 50 
nm achieves a wider memory window, long retention time 
for the Program, and infinite retention (>108 s) for Erase 
operation. The results also show linear synaptic features 
with non-linearity values of 2.5 and -0.42 for LTP and LTD, 
respectively. Furthermore, the device conductance values 
are utilized as synaptic weights for image recognition of 
MNIST datasets in neural networks and achieve 93.30 % 
accuracy. The results reveal that vertically stacked NSFET 
is suitable for next-generation charge trapping memory 
and neuromorphic computing due to its wider memory 
window, long retention, better accuracy, and high density.  

 
Index Terms—NSFET, Synaptic Transistor, LTP, LTD, 

Neural Network, neuromorphic computing. 

I. INTRODUCTION 

HE bottleneck issue of data transfer between memory and 

processor of conventional von-Neumann computing can 

be resolved by neuromorphic computing through the 

integration of memory and computing functions in a single 

device [1], [2]. Artificial synapse is an essential building block 

for neuromorphic computing, which mimics human behaviors 

such as image recognition and detection and can be 

implemented in neural network systems [3], [4]. Synapses are 

used to transfer the information between pre-neurons to post-

neurons and show the synaptic strength of the brain [3], [4]. 

The essential features of synapses are spike time-dependent 

plasticity (STDP), short-term potentiation (STP), long-term 

potentiation (LTP), and long-term depression (LTD). These 

features have been implemented through two terminal 
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memristive (Resistive RAM [5], [6], Phase Change Memory 

[7], [8], and Magnetic RAM) [9], and as well as three-terminal 

devices (Charge Trapping Memory [10], [11] and  

Ferroelectric Transistors [12]).  
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Fig. 1. Schematic representation of vertically Nanosheet FET for charge 

trapping memory and synaptic transistor in 3D, (b) vertical (y-z plane), and (c) 

horizontal (y-x plane) of 3D. S1, S2, and S3 indicate Sheet 1, Sheet 2, and 
Sheet 3 of vertical NSFET.  

 

The scaling of the devices becomes necessary for large-

scale integration of neural networks. The issues with these 

devices are scaling and other limitations, such as reliability. 

More recently, academia and industries have revealed the 

potential of vertically-stacked nanosheet field effect transistors 

for the next generation logic and memory applications [13]–

[18]. In addition, the epitaxial process controls NSFET by 

stacking multiple nanosheets in a vertical direction and the 

spacing between sheets [19]. The increase in gate 

controllability of NSFET compared to finFet, Nanowire, and 

planer MOSFETs results in less short channel effect, which is 

beneficial not only for logic application but also for memory 

application [20], [21]. The advantages of nanosheet FETs 

include better gate controllability, larger effective channel 

width, thus high current density, and also compatibility with 

the crossbar array architecture and 3-D integration [13]–[15]. 

These advantages make the transistor feasible for synaptic 

devices to achieve high conductance values for LTP and LTD.   

In this work, we have shown the feasibility of a vertically 

stacked nanosheet field effect transistor as a charge trapping 

memory (CTM) and emulate synaptic properties such as long-

term potentiation (LTP) and depression (LTD). The device is 
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optimized to achieve high retention time and endurance 

characteristics for non-volatile memory. In addition, a synaptic 

device shows better device conductance linearity (non-

linearity value of 2.5 for LTP and -0.42 for LTD) with a better 

dynamic range (maximum conductance/minimum 

conductance (Gmax/Gmin) > 103). The estimated conductance 

values are utilized for artificial neural networks, which 

resulted in 93.36% accuracy of Modified National Institute of 

Standards and Technology (MNIST) image datasets [22]. 
 

TABLE. I  
DEVICE PARAMETERS FOR NSFET AS CTM AND SYNAPSE 

Device Parameters Values 

Gate Length (Lg) 50 – 20 nm 
Silicon width (WSi) 20 nm 

Silicon Height (HSi) 10 nm 

Blocking Oxide (SiO2) 8 nm and 6 nm 
Charge Trapping Layer (Si3N4) 4 nm 

Tunneling Oxide (SiO2) 2 nm 

Number of sheets 3 
Total height 134 nm 

Temperature 300 K 

Source/Drain doping (ND(S/D)) 1020 cm-3 

Channel region doping (n-type) 1017 cm-3 

 
TABLE. II  

MATERIAL PARAMETERS FOR NANOSHEET FET BASED CHARGE TRAPPING 

MEMORY AND SYNAPTIC TRANSISTOR 

Parameters Values 

Trap density (NT) 1019 cm-3 

CCS area 10-13 cm-2 
m* of Si 0.36 mo, 0.38 mo 

m* of SiO2 0.50 mo, 0.25 mo 

m* of Si3N4 0.36 mo, 0.38 mo 
εSiO2 3.9 

εSi3N4 7.5  

µSi3N4 1.0 cm2 / V s 

Poole-Frankel trap 1015 

m*, mo, and CCS indicate effective mass, free electron mass, and capture cross 
section in the nitride layer. Si3N4 is considered a semiconductor in the 

simulation to trap electrons and holes [23]. 

II. DEVICE DESCRIPTION AND METHODOLOGY  

Fig. 1(a) represents the schematic representation of a n-type 

inversion mode vertically stacked nanosheet field effect 

transistor (NSFET) in 3D, Fig. 1(b) vertical (y-z plane), and 

Fig. 1(c) horizontal (y-x plane) planes of the 3D charge 

trapping memory (CTM) and artificial biological synapse. The 

device consists of three vertically stacked nanosheets. The 

device is simulated through a 3D Synopsys Sentaurus TCAD 

simulator with the optimized device parameters, as illustrated 

in Table. I [23]. Thanks to NSFET and the electrically coupled 

nanosheets, the impact of the external field is identical on 

every sheet. In order to perform the charge trapping and de-

trapping mechanism, we have incorporated the charge 

trapping models, with Fowler–Nordheim (FN) tunneling and 

Poole-Frankel model. The basic drift-diffusion models include 

concentration-dependent mobility, carrier lifetime SRH 

models, and dynamic non-local band tunneling, models. The 

material parameters used for the simulations are illustrated in 

Table II and adopted from [24].  

III. NSFET BASED CHARGE TRAPPING MEMORY  

The memory operations are performed through the F-N 

tunneling mechanism [25], [26]. The program (PGM) 

operation is performed by applying a positive (10 V) gate 

voltage due to thicker oxide, which allows the channel 

electrons to tunnel through tunneling oxide and traps them in 

the nitride layer. The contour plot of electron barrier tunneling 

during PGM operation is shown in Fig, 2(a). Erase (ERS) 

operation is performed by applying a negative gate voltage (-8 

V) for 10 µs, which de-traps the electrons from the nitride 

layer. The contour plot of hole barrier tunneling during ERS 

operation is shown in Fig, 2(b). The trapped electrons and 

holes in the nitride layer contribute positive and negative 

potential on the channel of the transistor after PGM and ERS 

operation [25], [26]. Trapped electrons increase the barrier 

while holes lower the barrier for source electrons, which can 

be confirmed through the conduction band (CB) energy and 

contour plots of electron density (eDensity) during read 

operation as shown in Fig. 3(a). The energy band diagram is 

extracted 1 nm below of the tunneling oxide of top sheets. Fig. 

3(b) shows the transfer characteristics of the device after PGM 

and ERS operations for different blocking oxide thicknesses (6 

nm and 8 nm) with a gate length (Lg) of 50 nm at a drain 

voltage of 1.0 V. The memory window (ΔVth) is wider (1.86 

V) for thicker blocking oxide due to the higher electric field at 

the blocking and nitride interface, which enhances the barrier 

for trapped carriers. Fig. 3(b) shows the retention time of 

NSFET charge trapping memory in terms of the threshold 

voltage (Vth) of PGM and ERS operation. 
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(a)           (b) 

Fig. 2. Contour plots for (a) electron barrier tunneling (eBarrier Tunneling) 

during the Program and (b) hole barrier tunneling (eBarrier Tunnelin) during 

Erase operation. The contour plots are extracted at the end of the operation. 

 

The threshold voltage is estimated through the maximum 

transconductance technique [26]–[28]. The retention time of 

trapped charges in the nitride layer is estimated by applying 

zero bias at all the electrodes and monitored for 3.15×108 

seconds (10 years) at 300 K. The threshold voltage of PGM 

operation with thicker blocking oxide maintains up to 78.35 % 

of the initial Vth. The threshold voltage of ERS operation is 

maintained for an infinite time (longer than 10 years). The 

retention time of thicker blocking oxide is higher than the 

thinner blocking oxide. Thinner blocking oxide maintains 

73.45% of initial voltage after years, while thicker blocking 

oxide maintains 78.85 %. The endurance of the NSFET based 
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charge trapping memory is shown in Fig 3(c) and estimated 

through program/erase (P/E) cycles. The device achieves the 

same Vth after 103 program/erase cycles, which confirms that 

the device has better endurance. Fig. 3(e) shows the gate 

length (Lg) scaling of NSFET device as CTM in terms of 

variation in Vth and memory window after PGM and ERS 

operation. The device can be scaled down to 15 nm with 

achieving optimum memory window of 1.3 V. These results 

revealed that the device could be an alternate for next 

generation charge trapping memory applications. The NSFET 

based charge trapping memory achieves longer retention for 

PGM operation and infinite retention for ERS operation with 

endurance > 103 and is feasible for the analog synaptic device. 
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Fig. 3. (a) Conduction band energy during read operation after Program 

(PGM) and Erase (ERS) operation. Variation in (b) Transfer characteristic and 

(c) threshold voltage (Vth) of the device after PGM and ERS operation of the 

charge trapping memory for different blocking oxide at gate length of 50 nm. 
(d) Variation in Vth after PGM and ERS for program/erase cycles. (e) 

Dependence of Vth and memory window (ΔVth) with gate length (Lg).  

IV. NSFET FOR NEUROMORPHIC COMPUTING 

Fig. 4 shows the schematic representation of an artificial 

synapse with vertically stacked nanosheet field effect 

transistor. In order to mimic biological behaviors (long term 

potentiation (LTP) and depression (LTD)) with vertically 

stacked NSFET, a repetitive pulse for potentiation and 

depression is applied. We have used 40 pulses for potentiation 

and depression. In the NSFET device, the gate and drain 

electrodes behave as pre- and post- synapses, respectively. 

Potentiation of the synapse in the brain is analogous to the 

Erase operation of charge trapping memory [10]. The 

potentiation operation is performed by applying identical 

pulses with a positive drain voltage (VDS = 3V) and negative 

gate voltage (VGS = -4V) with a pulse and interval time of 500 

ns as shown in the inset of Fig. 5(a).  
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Fig. 4. Schematic representation of NSFET based artificial synapse for 
neuromorphic applications.  
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Fig. 5. (a) Variation of trapped hole concentration (nh) in the nitride layer with 

pulse number. Transfer characteristics during inference operation after each 

pulse of (b) potentiation and (c) depression at a drain voltage of 0.1 V (d) 
Variation of conductance values of LTP and LTD with identical and 

incremental pulse time with pulse number.   

 

The applied bias generates electron-hole pairs in the 

semiconductor. Due to a sufficient electric field at the oxide 

interface, some holes get trapped in the nitride layer [26]. Fig. 

5(a) shows the trapped holes (nh) in the nitride layer with pulse 

number during the potentiation. An increase in the pulse 

number increases the nh in the nitride and thus increases the 

channel conductivity, similar to strengthening the synaptic 

plasticity [29]. Fig. 5(b) shows the transfer characteristic of 

NSFET CTM device after each potentiation pulse. The trapped 

charges in the nitride layer reduce the threshold voltage (Vth) 

at each pulse of the potentiation and thus increase the 

conductance with increasing pulses. The main focus of this 
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work is to adjust the non-linearity conductance issue during 

long term depression. The depression operation is based on F-

N tunneling. It is performed by applying a positive gate 

voltage with identical and incremental pulse voltage and 

different pulse times (100 ns and 500 ns). Case-I  identical 

pulse voltage (VGS = 2) with a pulse time of 500 ns. Case-II  

identical pulse voltage (VGS = 3) with a pulse time of 500 ns. 

Case-III  incremental voltage pulse VGS starts from 2 V and 

step voltage of 50 mV with a pulse time of 500 ns. Case-IV  

incremental voltage pulse VGS starts from 2 V and step voltage 

of 50 mV with a pulse time of 100 ns. Applying a positive 

voltage de-traps the holes from the nitride layer at each pulse 

and thus increases the threshold voltage as shown in Fig. 5(c). 

The conductance values (synaptic weight) at each pulse for 

neural networks are estimated from Fig. 5(b) and (c). Fig. 5(d) 

shows the conductance values during potentiation (LTP) and 

depression (LTD) with pulse number. As shown in Fig. 4(d), 

for Case-IV, the saturation in conductance values occurs after 

the 75th pulse, which conveys that lower pulse time with 

incremental pulse enables a higher available conductance state 

with the same memory window and controlling of synaptic 

weights. 

In synaptic weight updates for LTP, a large dynamic range 

(Gmax/Gmin) ~= 2×103 is achieved where Gmax = 0.56 mS and 

Gmin = 216 nS are the maximum and minimum conductance 

values). With a large dynamic range > 10, linear, and 

symmetrical conductance updates are essential criteria for 

neural network applications [30]. Fig. 6 shows the non-

linearity in conductance values (synaptic weights) are 

estimated through MATLAB simulation with derived 

equations as in [30], [31].  

 

      (1) 

    (2) 

            (3) 

 

where GLTP, GLTD, Gmin and Gmax indicate the potentiation, 

depression, minimum and maximum synaptic device 

conductance value. Pmax represents the maximum number of 

pulses applied for the device to transition from the lowest to 

highest conductance states. B is a fitting factor that is a 

function of A. 
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Fig. 6. Non-linearity calculation of NSFET synaptic device conductance 

values for an incremental pulse with a pulse time of 100 ns.    

In order to achieve better accuracy for online training, 

linearity and symmetry The results show that the incremental 

pulse with lower pulse time shows better linearity compared to 

other cases as demonstrated in Table III. The NSFET device 

achieves non-linearity value of 2.5 for LTP and -0.42 for LTD.  

 
TABLE. III 

NON-LINEARITY CALCULATION OF LTP AND LTD SYNAPTIC DEVICE WEIGHT 

VALUES. 

Cases  LTP LTD 

Case I  2.50 -6.20 

Case II  2.50 -5.10 
Case III  2.50 -2.23 

Case IV  2.50 -0.42 

Case I Identical with VGS = 2 V and tp of 500 ns. Case II Identical with 

VGS = 3 V and tp of 500 ns. Case III Incremental starts with VGS = 2 V and tp 
of 500 ns. Case IV Incremental starts with VGS = 2 V and tp of 100 ns. 
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Fig. 7. (a) Schematic of the three-layer neural networks with the vertically 

NSFET as the synapse for MNIST digit recognition. (b) Variation of digit 

recognition accuracy (%) with the number of training epochs for different 

cases of LTP. 

 

In order to verify the learning capabilities of the NSFET 

based synaptic device for hardware-based neural networks, a 

three-layer artificial neural network with input, one hidden, 

and output layers is shown in Fig. 7(a). The designed neural 

network is used to classify image data from a Modified 

National Institute of Standards and Technology (MNIST) 

dataset, which consists of 60,000 training images and 10,000 

test images of handwritten digits from “0” to “9” [22]. It is 

simulated with 28 × 28 pixels of MNIST datasets. The 
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conductance values extracted from the device for all the cases 

are utilized as synaptic weights for image recognition in the 

algorithm. The image is normalized in pixel intensities in the 

interval of 0 and 1 as shown in Fig. 7(a). The normalized pixel 

is transformed into a column matrix with 784 elements, which 

are then fed into the neural network. Rectified Linear Unit 

(ReLU) activation is used in network simulation. The results 

indicate that the better linearity of LTD has better recognition 

accuracy. The recognition accuracies for Case-IV after 200 

training epochs reach 93.30 %, which is only 3 % lower than 

the ideal software-based neural network accuracy as shown in 

Fig 7(b). The higher accuracy in image recognition and higher 

density of the device show that the proposed device is highly 

suitable for next generation neuromorphic applications. 

V. CONCLUSION 

The works show the feasibility of novel vertically stacked 

nanosheet FET for charge trapping and artificial synaptic 

properties such as long-term potentiation (LTP) and 

depression (LTD). The non-linearity of depression scheme is 

minimized to -0.42 with incremental pulse voltage and pulse 

time of 100 ns. An optimized depression scheme with 

incremental pulse achieves better linearity and accuracy 

(93.30 %) than conventional depression operation (89.00 %). 

This NSFET device achieves winder memory window and 

infinite retention time for Erase (potentiation) operation. The 

device is scaled down to 20 nm with memory window of 1.77 

V. These results convey that nanosheet FET is a promising 

candidate for next-generation memory and neuromorphic 

computing for longer retention, endurance, optimal memory 

window, higher density with linear weight, and better 

accuracy.  
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