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Abstract—Energy-efficient and noisy-adaptive signal process-
ing system are in high demand of edge biomedical applications.
In this paper, we present a Noise-Adaptive Memristive Bayesian
Neural Network (NMBNN) architecture for various biosignal
applications. The memristor has the inherent physical property of
exhibiting variability in resistance, which makes it a promising
candidate of uncertainty weight in Bayesian Neural Networks
(BNN). The NMBNN architecture combines the noise-resilient
attributes of BNN with the implementation of an energy-efficient
RRAM array. By utilizing BNN’s probabilistic predictions and
implementation with the conductance fluctuations of memristors,
NMBNN offers a robust and energy-efficient solution adept at
processing biosignals in noisy environments. In order to evaluate
the network robustness, we conduct the experiments to introduce
multiple types of noise as adversarial sample. The experimental
results indicate that the proposed NMBNN approach has the
advantages of being both noise-adaptive and energy-efficient.

Index Terms—bayesian neural network, network robustness,
memristor, signal processing

I. INTRODUCTION

Artificial intelligence (AI) has greatly contributed to health
monitoring and disease diagnosis by utilizing biomedical sig-
nals, leading to the development of various edge biomedical
applications [1]–[3]. However, many challenges still remain
in their practical application. In daily monitoring, acquir-
ing biomedical signal typically requires specialized medical
equipment and trained staff, making it difficult to implement
in real-world scenarios. Additionally, the signal acquisition
equipment inevitably introduces unwanted noise, which can
negatively impact network performance and affect the ac-
curacy of prediction models [4]. These limitations motivate
the development of new approaches that can deliver robust
performance while being energy-efficient and practical for
real-world implementation.

Unlike traditional neural networks with point estimates
for outputs, the Bayesian neural network (BNN) generates
probabilistic predictions, offering the inherent advantage of
effectively handling weight uncertainty and dealing with ex-
ternal noise [5]. This robustness makes BNN a promising
approach for processing biomedical signals that are subject to
various forms of noise and variability. Recently, the progress

Fig. 1. (a) 1T1M architecture. (b) RRAM-based set and reset curve with cycle-
to-cycle variations. (c) During programming, HRS and LRS suffer deviation
from the excepted weight with device-to-device variations.

of resistive random-access memory (RRAM), which is a two-
terminal device that contains resistive switching property,
provides the potential to use as energy-efficient deep learning
accelerators at the edge [6]–[8]. Due to the stochastic ion
behavior and vacancy forming process, the conductance of
memristors displays fluctuations and uncertainty perturbations
[9]. The varying conductive filaments provide variations from
the expected weight value and measurement errors, which
is similar to the weight uncertainty property in BNN [10].
Therefore, RRAM-based BNN could be a promising candidate
for efficient and robust deep-learning applications.

In this paper, we propose the NMBNN architecture, which
combines the noise-adaptive capabilities of BNN with the en-
ergy efficiency of memristor-based hardware, to overcome the
limitations of computation resources and noisy perturbation in
real-time assistance. The unique weight uncertainty property
of BNN enables it to handle noisy perturbations effectively
and perform robust computation in real-world scenarios. We
introduce multiple types of noise including Gaussian noise,
impulse noise, and signal distortion to test dataset as adver-
sarial samples, and conduct ablation experiments to assess the
network’s resilience under different noise conditions.



Fig. 2. The theory of proposed method: conventional method is easily affected by noisy perturbation while RRAM-based BNN with the advantage of
robustness and weight uncertainty have better performance in the real-world noisy scenario. P: probability; G: conductance value.

II. PRELIMINARIES

A. RRAM-based neural network

As an emerging device, RRAM can efficiently accelerate
vector-matrix multiplications in deep learning models by re-
alizing the in-memory computing architecture [9]. The 1T1M
configuration is one of the widely employed methods [11],
where the transistor serves as a selector to control resistance
switching as shown in Fig. 1(a). Through the process of
shifting between high resistance state (HRS) to low resistance
state (LHS), it would form multiple conductance states, which
are well-suited for representing synaptic weights in neural
networks. Nonetheless, ion motion randomness or fluctuating
conductance filaments invariably result in variations, such as
cycle-to-cycle and device-to-device variations, as depicted in
Fig. 1(b) and (c). Those variations generate notable deviations
from the expected weight value and result in measurement
errors, which degrade the performance in conventional neural
networks [12].

B. Bayesian neural network

BNNs have gained considerable attention in the machine
learning algorithms. Unlike conventional neural network with
fixed weights, it offers a probabilistic approach to weight
optimization [5]. BNN maintains output as a probability dis-
tribution over possible weights, encapsulating an inherent un-
certainty associated with the weights of a neural network. The
core of a BNN aims to approximate the posterior distributions
of weight space p(w|D) with Bayes’ theorem:

p(w|D) =
p(w)p(D|w)

p(D)
(1)

where p(D) represents the marginal likelihood, p(w) repre-
sents the prior weight distribution, and p(D|w) represents
the likelihood of observing the data D given the weight w.
Due to the intractability of the posterior P (w|D), variational
inference proposes the use of a variational distribution q(w|θ)
to approximate the posterior, thus avoiding the intractable
computation. This can be accomplished by minimizing the
closeness between the two distributions through Kullback-
Leibler (KL) divergence:

θ∗ = argmin
θ

KL[q(w|θ) ∥ P (w)]− Eq(w|θ)[logP (D|θ)]
(2)

The backpropagation algorithm combines the cost of KL
divergence KL[q(w|θ) ∥ P (w)] and likelihood probability
Eq(w|θ)[logP (D|θ)]. For the priori knowledge P (w) from the
above equation, it can be formulated as a Gaussian distribution
with the mean µi and standard deviation σi:

P (w) = N (µi, σi) (3)

For the posterior weight distribution, it aims to find optimal
variational parameters θ = (µ, δ) according to the information
of priori knowledge. The variation property in RRAM-based
network implementation is suitable for exploiting weight un-
certainty in BNNs [9], [13].

III. THEORY OF THE PROPOSED APPROACH

A. System architecture

Fig. 2 shows the proposed NMBNN architecture. In daily
monitoring, noise is a common issue that can interfere with
the quality and reliability of biomedical signals. As raw
ExG signals are collected and processed by medical equip-
ment, there is a possibility for the unintended introduction



of extraneous noise in acquisition process. For conventional
CNN method with fixed weights, it would face challenges in
maintaining accuracy when data is subjected to noise-induced
perturbations.

In contrast, the proposed NMBNN approach exploits the
variability inherent in the memristor crossbar to provide a
priori situations to a BNN. It effectively serves as the uncertain
weights in the neural network, thereby offering robustness
and adaptability to noise. Furthermore, unlike conventional
CMOS processors, RRAM have the unique property to store
and process the data with computate-in-memory (CIM) archi-
tecture, which enhances computational efficiency and reduces
the power consumption. By employing the proposed method,
the network attains substantially improved performance when
handling adversarial noisy samples in the test data. By address-
ing potential challenges associated with the harmonization of
software and hardware requirements, the proposed NMBNN
architecture can be further refined for practical implementa-
tion.

IV. EXPERIMENT EVALUATION

A. Noise behaviour analysis

Noise is a prevalent issue encountered during biomedical
signal acquisition and translational shifts procedure due to ran-
dom fluctuations in physiological processes or environmental
factors. One common way to represent noise in biomedical
signals is through an additive noise model [14], where the
noise component is added to the original clean signal. This
can be mathematically formulated as:

N(t) = A(t) + n(t) (4)

where N(t) represents the noisy signal at time t, A(t) rep-
resents the orginal clean signal at time t and n(t) is noisy
component.

We consider three common noise phenomenons relevant
to biosignal processing: Gaussian noise, impulsive noise, and
noisy fold behavior. Gaussian noise, also known as white noise
or thermal noise, follows a Gaussian distribution with a zero
mean and constant standard deviation. It is caused by random
fluctuations in signal and system components, such as thermal
noise in electronic devices. Mathematically, Gaussian noise
ng(t), with its mean as µ and standard deviation as σ, can be
represented as:

ng(t) = µ+ σξ(t) (5)

where ξ(t) is a random variable following a standard normal
distribution.

Impulsive noise is characterized by sudden high-amplitude
spikes that appear randomly in the signal and introduces abrupt
changes to the analysis process. This noise can be modeled
using a Bernoulli-Gaussian sequence [15]:

ni(t) = r(t)q(t) (6)

where r(t) is a Bernoulli random variable with probability p
of taking the value 1 and probability (1 − p) of taking the
value 0. q(t) represents the amplitude of the impulse.

Fig. 3. (a) Demonstration of three kinds of noise. (b) Performance comparison
for different proportion of clean data with Gaussian noise. (c) Performance
comparison for different proportion of clean data with impulsive noise. (d)
Performance comparison for different proportion of clean data with noisy fold
behaviour.

For the noise fold situation, it represents a scenario where
the noise is complex and folded over itself in multiple layers.
The intricate layering makes it tough to discern a clear pattern
or feature. We formulate it as a weighted sum of several
Gaussian noise components:

nf (t) =

K∑
k=1

wkngk(t) (7)

where K is the total number of Gaussian noise components
and wk represents the weight of the k-th Gaussian noise
component.

Fig. 3(a) illustrates these three types of noise phenomena.
From this figure, one can observe the distinct characteristics
of Gaussian noise, impulsive noise, and multi-component
Gaussian noise. After we trained the model, we introduce these
types of noise into the test dataset as adversarial samples. The
inclusion of adversarial samples with noise perturbation helps
assess the model’s ability to deal with real-world challenges.
This is critical for evaluating the model’s robustness and
performance under conditions that mimic actual biomedical
signal processing scenarios.

B. Experimental result

We evaluate our NMBNN model along with noisy analysis
for three different biomedical tasks, including EEG-based
seizure prediction, EMG-based gesture recognition and ECG-
based arrhythmia detection. Our experiment is based on three
open-source datasets, including MIT-BIH dataset for ECG,
Nina Pro DB1 dataset for EMG and CHB-MIT dataset for
EEG. We employ the CNN model directly from paper [16] as
a baseline method, and conduct experiments by introducing



TABLE I
PERFORMANCE COMPARISON UNDER MULTIPLE NOISY SITUATIONS

Dataset Task Network type Acc Noise type NP (%)

ECG MIT-BIH
Arrhythmia

detection
5Conv+2FC 98.3

Gaussian
84.38

92.86

Impulsive
64.69

82.46

Noisy fold
51.72

66.47

EMG Nina Pro DB1
Gesture

recognition
4Conv+FC 83.14

Gaussian
65.64

73.64

Impulsive
61.42

68.78

Noisy fold
57.24

67.23

EEG CHB-MIT
Epileptic

seizure detection
6Conv+2FC 94.23

Gaussian
78.11

88.53

Impulsive
72.21

84.53

Noisy fold
74.23

85.36

Acc: accuracy; NP: noisy performance; Conv: convolutional layer; FC: fully connected
layer.

noisy perturbation. Figures 3(b), (c), and (d) present perfor-
mance comparisons on the MIT-BIH dataset between CNN
and BNN with the introduction of Gaussian noise, impulsive
noise, and noisy fold behavior, respectively.

We carry out twenty iterations on test dataset with the
weight uncertainty BNN to evaluate the model’s boundary
and compute the average performance. As expected, both
networks exhibited a decrease in classification accuracy as
the proportion of noisy signals increased. However, despite
the overall decrease in accuracy, BNN demonstrates more
stability and robustness compared to conventional CNN model.
In an environment with Gaussian noise, CNN experiences a
substantial drop in accuracy from 93.59% to 74.84% as the
noise proportion increases from 0.1 to 0.5. In comparison, the
BNN model exhibits a significantly less pronounced decrease,
with an average accuracy reduction of 8.9%, from an initial
accuracy of 97.27% to 88.37%. It is evident that RRAM-based
BNN maintains robust performance and provides a probability
range for test results, which highlight the advantages of
NMBNN in terms of noise adaptiveness and robustness.

Table I compares the proposed RRAM-based BNN method
with other CNN methods. In terms of noisy performance, the
average accuracy of BNN under perturbation is highlighted
in bold, while the original CNN method is grayed out for
comparison. The baseline CNN method without any noise is
listed in Acc column. For EEG-based seizure detection task,
the baseline CNN model reaches the accuracy of 94.23% and
NMBNN method hold the stable performance of 88.53% with
Gaussian noise, which is much higher than the original CNN
model (78.11%). For each biomedical task, we can observe
the significant noisy influence for original method, which also

TABLE II
COMPARISON WITH PRIOR PUBLICATIONS

This work TBioCAS’23 [18] IET’20 [19] TBioCAS’20 [19]

Network type BNN CNN SRNN MLP

Technology node 65nm 55nm 55nm 180nm

Device type RRAM CMOS CMOS CMOS

Energy

(µj/classification)
0.142 0.99 1.99 3.21

Area(mm2) 2.72 5.06 4 0.93

Performance 98.49% 99.38% 97.80% 98.00%

Noise performance 92.86% 84.37% 86.45% 90.40%

indicates the challenge of real-time signal processing in edge
computing. However, with the introduction of our NMBNN
method, we can enhance the model’s robustness and lessen
the impact of different types of noise on performance. The
NMBNN’s ability to sustain high levels of accuracy under
noisy conditions suggests its potential for deployment in real-
time health monitoring systems.

C. Performance evaluation

The proposed NMBNN is evaluated according to the Neu-
roSim platform [17]. In order to compare the performance
of proposed architecture, we estimate the network in 128x128
memristor array for edge ECG-based arrhythmia detection. Ex-
cept the RRAM array, the NMBNN system includes peripheral
circuits with CIM architecture using 65nm technology node,
which can deploy a 7-layer network.

Table I make a brief comparison with other state-of-the-
art work including area, energy consumption, and detection
accuracy. The proposed method exhibits great robustness and
energy efficiency in edge ECG-based arrhythmia detection
task. Specifically, it achieves a high noise adaptive accuracy
of 92.86% and exhibits up to 8 times greater energy effi-
ciency compared to other methods. These results underline
the robustness and energy efficiency of the proposed NMBNN,
marking it as a promising approach for practical biomedical
applications.

V. CONCLUSION

In this paper, we present NMBNN architecture, which
can be an energy-efficient and noise-adaptive solution for
edge AI biomedical application. By synergistically integrating
the probabilistic and noise-resilient attributes of BNN with
hardware-friendly implementation of RRAM, the NMBNN
method outperforms the conventional CNN based method
among three biomedical signal datasets. By effectively han-
dling noisy environments and operating with high energy
efficiency, NMBNN paves the way for timely interventions
and effective signal processing in critical scenarios.
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