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Abstract—Spintronics-based magnetic tunnel junction (MTJ)
devices have shown the ability working as both synapse and
spike threshold neurons, which is perfectly suitable with the
hardware implementation of spike neural network (SNN). It
has the inherent advantage of high energy efficiency with ultra-
low operation voltage due to its small nanometric size and
low depinning current densities. However, hardware-based SNNs
training always suffer a significant performance loss compared
with original neural networks due to variations among devices
and information deficiency as the weights map with device synap-
tic conductance. Knowledge distillation is a model compression
and acceleration method that enables transferring the learning
knowledge from a large machine learning model to a smaller
model with minimal loss in performance. In this paper, we
propose a novel training scheme based on spike knowledge
distillation which helps improve the training performance of
spin-based SNN (SSNN) model via transferring knowledge from
large CNN model. We propose novel distillation methodologies
and demonstrate the effectiveness of the proposed method with
detailed experiments on four datasets. The experimental results
indicate that our proposed training scheme consistently improves
the performance of SSNN model by a large margin.

Index Terms—SNN, magnetic tunnel junction, knowledge dis-
tillation, transfer learning

I. INTRODUCTION

Nowadays, many AI applications require deploying at the
edge for real-time assistance and feasibility, where compu-
tation and memory sources are comparatively limited. Spike
neural network (SNN) is inspired biological brain and ner-
vous systems, which attracts the arising the attention of both
academia and industry over several years [1]. As a future
candidate for edge computing, the SNNs process and convey
information by spike, which significantly reduces information
redundancy with low resource utilization and energy-efficient
information processing.

Spintronics-based magnetic tunnel junction (MTJ) devices
have shown promise application in achieving brain-like SNN-
based architectures [2]–[4]. Magnetic skyrmions are particle-
like magnetic textures that are widely used in non-volatile data
storage and computing applications [5]. MTJ devices based
on skyrmions contain the basic element of SNN, including
skyrmion neurons [6] and skyrmion synapses [7]. Therefore,
the electric-field control of spintronic devices can be a can-
didate for hardware implementation of SNNs with the benefit
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Fig. 1. (a) Skyrmion-MTJ device structure (Ta/CoFeB/MgO/CoFeB), which
shows both neuron and synapse behavior. It is a three-terminal device (T-1,
T-2, and T-3), which can be easily programmed by tunning the voltage of
T-2. (b) MTJ-based synapse STP behaviour (potentiation and depression). (c)
MTJ-based LIF neuron model, where skyrmion position changes according
to the pulses.

of high data storage density [8] and low switching energy [9].
However, the hardware training and off-line mapping process
always meet a significant accuracy loss due to the device
stochasticity and low precision among device synaptic weights
[10].

This study utilizes an energy-efficient skyrmion-based neu-
romorphic MTJ (Ta/CoFeB/MgO/CoFeB) device with differ-
ent neuron plasticity (potentiation and depression) [11]. It also
shows Leaky Integrate and Fire (LIF) neuron behavior, which
can be viewed as a biological plausible activation function.
Based on that skyrmion-based MTJ device, we propose a
novel knowledge distillation training scheme to increase the
robustness of spin-based spike neural network (SSNN) system
and training accuracy. In this paper, we describe the imple-
mentation of knowledge distillation in SSNN, which assist
SSNN to learn hybrid information from convolutional neural
network (CNN) and overcome insufficient training problem.
In the first stage, we pre-train a CNN (teacher network) with
raw data to achieve higher performance. Then, in the second
stage, we introduce an SSNN (student network) with an initial
state fully utilizing spin-based synapses and a spin-based LIF



Fig. 2. Conceptual illustration of proposed training scheme, where ‘SConv Block’ stands for ‘spike convolution block’, ‘SFC Layer’ stands for ‘spike fully
connected layer’, ‘FC Layer’ stands for ‘fully connected layer’. The upper model is the spin-based student model, where MTJ-based neuron and synapses are
utilized. The blow model is the pretrained teacher model, which guides the student model training. LKD and LKD are measured by the features map output
probability distribution over student and teacher model. Lcls is calculated through true label and student output.

neuron model, then both the student and teacher networks are
optimized under different constraints. Our training method has
potent portability and generality, which does not require any
alterations to the original SNN architecture.

In this paper, we describe the spike knowledge distillation
approach based on SSNN, which observes a noticeable per-
formance increase within four datasets among different time
steps. The remaining sections of this paper are organized as
follows. Section II introduces the spintronic device model
and the algorithm details. Experimental results are shown in
Section III. In Section IV we make a brief conclusion to this
paper.

II. THEORY OF THE PROPOSED APPROACH

A. MTJ-based synapse and neuron

Fig. 1(a) presents skyrmion-MTJ device structure [Ta
(5nm)/CoFeB (0.8nm)/MgO (2nm)/CoFeB (2nm)], which re-
lies on skyrmion size and density manipulation. The skyrmion-
MTJ device can show mixed synaptic plasticity, which can
be easily programmed by tuning the voltage [12]. When
positive voltage pulses are applied, the free layer anisotropy
decreases by 1%–5%, which causes the increase in skyrmion
size along with the resistance decreases (potentiation). On the
contrary, when removing the voltage, the skyrmion loosens to
its original size brought by depression as shown in Fig. 1(b).
The synaptic behavior provides the suitability to use as the
weights in SNN.

Besides synapse, the LIF neuron is also an indispensable
part of SNN. The LIF helps integrate spike information and
transfer messages in a low-power consumption way. The
simulation results indicate MTJ-based synaptic device can also
work as the LIF neuron dependent on current and skyrmion
position. By fitting curve of the micromagnetic simulation of
the skyrmion velocity, we model the skyrmion LIF neuron by
the following functions:
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where x is the position of the skyrmion with the re-
spect to MTJ, also indicates with the membrane of
spike neuron, k1 = 2.12× 102, k2 = −27.6, and ϑ =
f(α, β,G,D, a and P )m3/C, with α, β are parameters
determined by the non-adiabatic term, G is the gyromagnetic
coupling, D is the dissipative force tensor, P is the polariza-
tion, e is the elementary charge, a is the lattice constant and
Ms is the saturation magnetization. The experimental LIF neu-
ron simulation result is illustrated in Fig. 1(c). When receiving
the stimulus pulses, the membrane of neuron will update and
integrate information. When the membrane potential comes to
the threshold voltage, it will generate a spike, and then decay
to the rest. The threshold and reset function perfectly meets
the ideal LIF neuron property, which indicates its potential



Fig. 3. The comparison of SNN and CNN output

utilization in SNN.

B. Knowledge distillation

Knowledge distillation is a transfer learning method that
acts as a similar way to how human beings learn. The same
as student learning from teacher, knowledge distillation was
proposed to obtain a comparable performance in a small
and low precision model by transferring the knowledge from
a large teacher model. It is a popular model compression
method, which has benefited many machine learning tasks
[13]–[15].

As shown in Fig. 3, SNN and CNN have different sorts
of output, which provides the potential probability to learn
and extract knowledge from output response. SSNN requires
to count spikes to compute the average output over all time
steps as spike output, while CNN has the output of direct
probability distribution after SoftMax function. Besides, with
the utilization of the spin-based synaptic weight and neuron
model, SSNN has less precision due to device synapse and
occurs information deficiency when computing the gradient to
optimize the model parameters. With the guidance of teacher
model, student model could learn soft targets and directly
mimic the final prediction of the teacher model. The response-
based knowledge distillation is simple yet effective for model
compression, which has been used in SNN training tasks [16].

Besides, feature map from the intermediate layers could be
a reasonable extension of soft target based knowledge. Though
SSNN and CNN have different data input and activation meth-
ods, the intermediate feature map can also guide the training
of the student model by providing extracted knowledge.

C. Training framework

Fig. 2 shows our training scheme. In first stage, we pretrain
a CNN as the teacher model ft parameterized Θt with original
data and normal activation function ReLU to achieve a higher
accuracy. In the second stage, with spike encoded in different
time steps, we aim to train a SSNN student model fs with
initial device conductance Θs. To achieve better performance

Algorithm 1: The proposed training scheme
Input: data, time step,

temperature parameter: T0, learning rate: lr,
batch size: Bs, training dataset size: Nk+1

Spike generator
for t=0 to time step do
if normalized data>Gaussian random then

spike seq(t)← 1;
else

spike seq(t)← 0;
end
Output : Distilled student Model : fs,

# Initialization
Initialize teacher model ft with pretrained weight Θt

Initialize student model fs with device conductance Θs

while i = 0; i < Epoch; i++ do
# batch loop
while b = 0; b < [Nk+1/Bs]; b++ do
Lt ←− {fs(spike seq(t)), ft(data), Target}
Θt ←− Θt + lr

∂Lt

∂Θt

Ls ←− {fs(spike seq(t)), ft(data),
feature(fs), feature(ft), Target, Temperature)}
Θs ←− Θs + lr

∂Ls

∂Θs

end
end
Return the SSNN model that yields better performance.

and transfer knowledge between models, we ask ft and fs
to optimize at different constraints and guide fs to ”learn”
knowledge from both true label and ft. Specifically, ft and fs
have the same model structure but fs shows more biological
property and energy efficiency, including using encoded spikes
as the input and adopting the MTJ-based LIF neuron model
and MTJ-based synaptic as the activation function and the
weights respectively. The proposed loss function to train
the student model consists of three losses; a classification
loss Lcls; a knowledge distillation loss LKD, and a feature
supporting loss LFL:

Ls = Lcls + αLKD + βLFL (3)

α and β represent the weights given to the losses LKD,
LFL. When given a sample data xn, the probabilistic dis-
tribution outputs are denoted by qtn = σ(ft(xn)) and qsn =
count(fs(xn)), where σ(·) refers to the softmax function
and count() is the function to sum spike information. Lcls

is known as mean squared error (MSE) loss and LKD acts
as knowledge distillation loss [17]. Lcls and LKD could be
defined below:
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1
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where Ŷi represents true label, pp and pc are represented by
the probabilistic distribution output qsn, qtn, giving following
equation:

p = Softmax(
qn
T0

) (6)

According to the ‘temperature’ T0, it is a parameter designed
for soften probability distributions. Besides probabilistic level
measurement, we also consider the intermediate feature dif-
ference after convolutional layers between two networks. For
feature supporting loss LFL, it could be given by:

LFL = γ
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2
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where zt and zs are the last convolutional feature map of
two networks, which stands for the last convolutional layer
before FC layers, and γ, T represent the weight parameter
and time steps, respectively. For SSNN feature, it requires
to integrate information of each time step and generate new
feature map in average. Since the two networks have the same
feature size for each layer, we can directly match the feature
maps and compute the feature loss without any additional
operations.

For teacher model, we also do some optimation towards the
pre-trained parameters during the training with student model.
The loss function of teacher model is given by:

Lt = Lcls + δLKD (8)

where Lcls contributes as the main part and δ is a small
coefficient to balance two losses.

For SNN training, it usually takes more epochs to converge
than CNN. During training, we update the parameters of
the two models together to transfer knowledge from high
accuracy CNN to SSNN. According to the training step, the
input for SNN is encoded into discrete spikes towards the
Gaussian random number while the CNN receives inputs from
the original data. The proposed training method is shown in
Algorithm 1.

III. EXPERIMENTAL RESULTS

To demonstrate the performance of the proposed train-
ing scheme, we present experimental results over four open
datasets listed in Table I. Among the datasets, cifar 10 and
MNIST are famous image datasets wildly used in image
recognition, while MIT-BIH and UCI-HAR datasets provide
time-series signal classification tasks. We adopt a simple SNN
training method through back propagation as the reference
baseline also acted as student model [21]. For each scenario,
raw data is encoded into different time steps in the same way.
With higher time steps, the baseline spin-based SNN method
receives more information encoded by spike and achieves
higher accuracy, but it also brings more hardware resource
utilization and energy consumption. The teacher model utilizes
the raw data to pretrain first and optimizes together with
student model. For the experiment on every dataset, the

TABLE I
PERFORMANCE COMPARISON OF PROPOSED AND SIMPLE TRAINING

SCHEMES

Dataset Type Method Structure Time step Acc

MNIST
Teacher ANN 784-100-10 / 97.38

Student [18] Spin-based SNN 784-100-10 1 91.15
Student+KD Spin-based SNN 784-100-10 1 93.07

CIFAR-10

Teacher CNN 6Conv+2FC / 90.31

Student [18] Spin-based SCNN 6SConv+2SFC
8
4
2

84.03
69.73
48.89

Student+KD Spin-based SCNN 6SConv+2SFC
8
4
2

85.43
72.16
57.69

MIT-BIH

Teacher CNN 5Conv+2FC / 98.23

Student [19] Spin-based SCNN 5SConv+2SFC
8
4
2

87.06
81.81
71.63

Student+KD Spin-based SCNN 5SConv+2SFC
8
4
2

89.53
83.43
74.53

UCI-HAR [20]

Teacher CNN 5Conv+2FC / 95.39

Student Spin-based SCNN 5SConv+2SFC
8
4
2

74.54
63.66
47.57

Student+KD Spin-based SCNN 5SConv+2SFC
8
4
2

76.60
65.91
53.53

KD: proposed knowledge distillation method; Acc: training accuracy.

performance of our training scheme is marked in bold text
as Student + KD while teacher model is marked in grey as a
comparison. As can be seen, our training scheme demonstrates
the consistent improvement of all baseline methods among
four datasets with different spike encoding steps. Generally,
with lower time steps, the increment brought by knowledge
distillation is much more significant. Learning from teacher
model could directly help student model mimic the teacher
output which gains better performance. For example, in the
UCI-HAR dataset classification task, which is applied to clas-
sify six different human actions, the training scheme improves
the performance of spin-based SCNN by 1.62% from 81.81%
to 83.43% with four-time steps. This suggests that by learning
knowledge from a high-performance CNN model, we can
improve the SSNN accuracy by a large margin.

IV. CONCLUSION

In this paper, we propose a novel spike knowledge distilla-
tion method to improve the performance and training accuracy
of all spin spike-based deep neural network. We utilize the
proposed training scheme on four datasets and compared
training results with or without our training scheme on small
spin-based SCNN student model with different time steps.
Results show that the proposed training scheme can guide
knowledge learning to SNN and consistently improves the
accuracy of all methods in any time step. This indicates the
training scheme can be applied to SSNN based training method
to improve training performance without any modifications
with network structure.
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